Imputasi Data: Definisi, Metode, dan Pentingnya
Populix

Imputasi Data: Definisi, Metode, dan Pentingnya

2 tahun yang lalu 3 MENIT MEMBACA

Sudahkah Anda tahu tentang apa itu imputasi data? Melansir laman Research Connections, imputasi data adalah sebuah metode yang digunakan untuk mengisi nilai yang hilang (karena tidak ada respons) dalam survei. Metode ini didasarkan pada analisis cermat terhadap pola data yang hilang.

Jenis imputasi data meliputi imputasi rata-rata, imputasi ganda, hot deck dan cold deck. Imputasi data dilakukan untuk memungkinkan analisis statistik terhadap survei yang hanya diselesaikan sebagian.

Untuk lebih jelasnya, simak penjelasan ini terkait imputasi data dalam proses penelitian ataupun riset.

Apa Itu Imputasi Data?

imputasi data adalah

Seperti yang telah dijelaskan sebelumnya, imputasi data adalah sebuah kondisi yang melibatkan representasi nilai hilang dalam kumpulan data.

Data yang hilang tersebut menimbulkan sejumlah tantangan potensial bagi analisis statistik.

Masalah ini dapat menghantui siapa saja yang terlibat dalam metode ilmiah. Adapun kemungkinan data hilang yaitu karena memang tidak pernah dikumpulkan, entri hilang, atau karena alasan lainnya.

Informasi lain mungkin sulit atau bahkan mahal untuk diperoleh.

Baca juga: Indikator: Definisi, Komponen Dasar, Fungsi

Metode Imputasi Data

Mengutip situs Scribbr, ada beberapa metode imputasi yang dapat dipilih. Metode imputasi yang paling mudah yaitu dengan mengganti nilai hilang dengan nilai mean atau median untuk variabel tersebut.

Adapun metode yang dapat Anda pilih di antaranya:

1. Hot-Deck Imputation

Dalam imputasi hot-deck, Anda mengganti setiap nilai yang hilang dengan nilai yang ada dari kasus atau peserta serupa dalam kumpulan data Anda.

Untuk setiap kasus dengan nilai yang hilang, nantinya akan diganti dengan nilai yang disebut ‘donor’ yang serupa kasus tersebut berdasarkan data untuk variabel lain.

2. Cold-Deck Imputation

Alternatif lain yang dapat Anda pilih yaitu cold-deck imputation, di mana Anda mengganti nilai yang hilang dengan nilai yang ada dari kasus serupa dari kumpulan data lain.

Nilai-nilai baru berasal dari sampel yang tidak berhubungan.

Harap diperhatikan, gunakan dan pilihlah metode atau teknik imputasi data dengan hati-hati. Sebab, imputasi adalah tugas yang rumit karena Anda haurs mempertimbangkan pro dan kontra.

Baca juga: Research and Development (RnD): Definisi, Fungsi, hingga Peran pentingnya

Pentingnya Imputasi Data

pentingnya imputasi data

Adanya imputasi data sangatlah penting, karena data yang hilang dapat menyebabkan masalah-masalah berikut ini:

  • Mendistorsi kumpulan data: Data yang hilang dalam jumlah besar dapat menyebabkan anomali dalam distribusi variabel, yang dapat mengubah kepentingan relatif berbagai kategori dalam kumpulan data.
  • Tidak dapat bekerja dengan sebagai besar mesin pembelajaran yang berkaitan dengan pustaka Python: saat menggunakan pustaka ML (SkLearn adalah yang paling populer), kesalahan mungkin terjadi karena tidak ada penanganan otomatis terhadap data yang hilang ini.
  • Berampak kepada model akhir: Data yang hilang dapat menyebabkan bias pada kumpulan data, yang dapat memengaruhi analisis model akhir.
  • Keinginan untuk memulihkan seluruh dataset: Hal ini biasanya terjadi ketika kita tidak ingin kehilangan satu pun (atau lebih) data dalam dataset kita karena semuanya sangat penting. Selain itu, meskipun kumpulan datanya tidak terlalu besar, menghilangkan sebagian dari kumpulan data tersebut dapat berdampak pada model akhir.

***

Imputasi data tidak hanya memberikan keberlanjutan data yang akurat, tetapi juga mendorong pertumbuhan dan inovasi dalam pengumpulan informasi.

Itulah penjelasan terkait imputasi data. Nah, jika Anda ingin melakukan survei online secara mandiri, Anda dapat memanfaatkan layanan PopSurvey (sebelumnya Poplite). PopSurvey dapat menjadi alat yang sangat berharga dalam merajut informasi yang kaya dan relevan untuk mendukung perkembangan bisnis dan pengambilan keputusan yang berkelanjutan.

PopSurvey Populix platform survei online

Baca juga: Replikasi: Definisi hingga Pentingnya pada Penelitian

Artikel Terkait
Pengertian Bias dan Contohnya dalam Penelitian atau Riset
Dalam riset atau penelitian, kita sering mendengar kata bias. Namun, apa arti bias? Secara teknis, bias adalah kesalahan sistematis, di mana penelitian tertentu menyimpang dari temuan yang benar. Mengutip laman The Association for Qualitative Research, bias terjadi melaui kesalahan dalam cara wawancara ataupun pengambilan sampel. Faktor manusia dianggap sebagai pemicu dari terjadinya bias. Yuk, pahami […]
Bayar Platform Survei Pakai Corporate Card: Solusi Pengeluaran Efisien
Platform survei memungkinkan perusahaan mendapatkan data berharga tentang pelanggan, market, dan karyawan secara cepat dan akurat. Dengan begitu, perusahaan dapat memperoleh wawasan yang lebih dalam untuk menyesuaikan strategi bisnis dengan kondisi pasar yang terus berubah.  Biasanya, tersedia berbagai layanan yang bisa dipilih dengan harga yang terjangkau. Tentunya, perusahaan bisa memanfaatkan corporate card untuk membayarnya. Dengan […]
Virtual Credit Card: Pengertian, Manfaat, dan Rekomendasi Kartu Terbaik
Seiring kemajuan teknologi yang makin canggih dalam kehidupan sehari-hari, telah hadir berbagai inovasi yang bermanfaat bagi dunia bisnis, salah satunya adalah Virtual Credit Card (VCC) atau kartu kredit virtual. Secara global, penggunaan VCC terus meningkat, terutama di kalangan pelaku bisnis. Pada tahun 2023, nilai pasar VCC sudah mencapai sekitar $408 miliar dan diperkirakan akan melonjak […]